

10 FAQ's (Frequently Asked Questions) About Wind Energy Integration ...and Answers

Great Lakes
Regional Wind
Energy Institute
Feb 24, 2009
Columbus, OH

Michael Milligan, Ph.D.

National Renewable Energy Laboratory
Golden, Colorado USA

10 FAQ's about Wind

- 1) How much wind is currently installed in the US?
- 2) What are the benefits of wind energy to the power system?
- How can wind's variability be incorporated into power system operations
- 4) Does wind plant output start/stop suddenly?
- 5) Can wind be predicted?

10 FAQ's about Wind

- 6) Can the power system be reliably operated with wind energy?
- 7) Does wind need backup or storage?
- 8) Is there a limit to how much wind can be accommodated on the grid?
- 9) Can wind power plants be controlled?
- 10) Can wind energy make effective use of transmission lines?
- 11) Bonus Question: How can more wind be accommodated on the grid?

Where do the Answers Come From?

- Extensive analysis
 - Power system simulations that mimic real-time operations
 - Statistical analysis of wind and load data
 - Experience operating power systems with wind
- International Energy Agency Task 25 Report: Design and operation of power systems with large amounts of wind power State of the art report.
 - http://www.vtt.fi/inf/pdf/workingpapers/2007/W82.pdf
- Utility Wind Integration Group <u>www.uwig.org</u>
- NREL Systems Integration
 - http://www.nrel.gov/wind/systemsintegration/
 - http://www.nrel.gov/publications

1) How much wind is currently installed in the US?

1) How much wind is currently installed in the US?

Colorado/Xcel:
Approx 20% wind
penetration (wind
capacity/system peak)

Iowa: Approx 18% wind penetration (wind energy/annual demand, est. 2009)

1b) How much wind is currently installed in Europe?

2) What are the benefits of wind energy to the power system?

- Wind energy displaces
 - Fuel
 - Emissions; carbon
- Wind provides a hedge against rising fuel prices (natural gas, coal)
- Wind is an energy source with limited capacity contribution → other generation is also required
- Wind can be costcompetitive with other forms of generation and may reduce electricity cost

3) How can wind's variability be incorporated into power system operations?

3) How can wind's variability be incorporated into power system operations?

- Electric load (without wind) varies considerably
- Power system operating practices are built around meeting the variable load with dispatchable generators that can change their output level
- Wind adds more variability to the system
- Existing operating practice can be used/expanded upon with wind

3) How can wind's variability be incorporated into power system operations?

 Minnesota 25% wind energy penetration (by energy) causes an increase in variability that must be met by power system operators and the non-wind generation fleet

Comparison of Cost-Based Integration Studies

Date	Study	Wind Capacity Penetra- tion (%)	Regula- tion Cost (\$/MWh)	Load Following Cost (\$/MWh)	Unit Commit- ment Cost (\$/MWh)	Gas Supply Cost (\$/MWh)	Tot Oper. Cost Impact (\$/MWh)
May '03	Xcel-UWIG	3.5	0	0.41	1.44	na	1.85
Sep '04	Xcel-MNDOC	15	0.23	na	4.37	na	4.60
June '06	CA RPS	4	0.45*	trace	na	na	0.45
Feb '07	GE/Pier/CAIAP	20	0-0.69	trace	na***	na	0-0.69***
June '03	We Energies	4	1.12	0.09	0.69	na	1.90
June '03	We Energies	29	1.02	0.15	1.75	na	2.92
2005	PacifiCorp	20	0	1.6	3.0	na	4.60
April '06	Xcel-PSCo	10	0.20	na	2.26	1.26	3.72
April '06	Xcel-PSCo	15	0.20	na	3.32	1.45	4.97
Dec '06	MN 20%	31**					4.41**
Jul '07	APS	14.8	0.37	2.65	1.06	na	4.08

^{* 3-}year average; total is non-market cost

^{**} highest integration cost of 3 years; 30.7% capacity penetration corresponding to 25% energy penetration; 24.7% capacity penetration at 20% energy penetration

^{***} found \$4.37/MWh reduction in UC cost when wind forecasting is used in UC decision

4) Can wind power start and stop suddenly?

- Large wind farms have many individual wind turbines
- The turbines are spread over many miles and do not experience the same wind at the same time
- TX event Feb 24, 2007: drop of 1,500 MW over 2 hours is similar to behavior of load

5) Can wind be predicted?

- Wind forecasts are derived from weather prediction models
- Wind forecast accuracy is improving
- Several wind forecasting firms in U.S.

Courtesy: WindLogics, Inc. St. Paul, MN

Are wind forecasts being used?

- Forecasts must be tuned to the needs of the system operator and integrated in control room
- Forecasts of potentially large ramp events?
- High-wind warning systems?
- Aggregate wind forecast error is reduced with large geographic aggregation
- Geographic dispersion can reduce forecast errors by 30-50% (WindLogics, UWIG Forecasting Workshop, Feb 2008)

	Mean Absolute Error (Percent)
Next day hourly wind power forecast	10-14% of rated capacity
Next day total energy forecast	20% of energy delivered
Next 2-3 hour power schedule	5-7% of rated capacity

Wind Forecasts in the Control Room

http://www.ercot.com/meetings/ros/keydocs/ 2008/0313/07._ERCOT_OPERATIONS_RE PORT_EECP022608_public.doc

- UWIG/WindLogics RDF
- Xcel/CO

6) Can the power system be reliably operated with wind energy?

- Yes additional flexible generation (operating reserves) may be necessary at higher wind penetrations
- This additional operating reserve has a modest cost, typically about 10% of the cost of the wind energy itself
- Graph shows this level of operating reserve (blue) is a relatively small, varying fraction of wind generation

Figure 30: Illustration of time varying "operating reserve margin" developed from statistical analysis of hourly wind generation variations.

EnerNex: Minnesota 20% Wind study

Innovation for Our Energy Future

7) Does wind need backup or storage?

- Increased operating reserves may be necessary, but not dedicated backup
- Although new storage has value, it may not be cost effective
- There is typically already storage on the system
 - Natural gas in the pipeline or storage facility
 - Controllable hydro
- A recent study by Xcel Energy in Colorado found
 - existing pumped storage provided \$1.30/MWh offset to wind integration cost
 - Enlarging existing gas storage facility was economic at large wind penetration

EnerNex: Xcel Colorado Wind Integration Study

Wind Penetration	10%	15%
\$/ MWH Gas Impact No Storage Benefits	\$2.17	\$2.52
\$ / MWH Gas Impact With Storage Benefits	\$1.26	\$1.45

8) Is there a limit to how much wind can be accommodated on the grid?

- Current studies in the U.S. have analyzed up to 25% of all electric energy from wind
- Based on work done so far, the question is not whether wind can be accommodated at high penetrations, the question is how and at what cost of integration

8) Is there a limit to how much wind can be accommodated on the grid?

Recent International Energy Agency Report:

Design and operation of power systems with large amounts of wind power

http://www.uwig.org/IEA Annex25-State of the Art Report.pdf

Denmark has access to large export markets Lennart Söder,KTH, Sweden, presented at UWIG, Oct 23-25, 2006

9) Can wind power plants be controlled?

- New low-voltage ride-through (LVRT) grid codes in the U.S. will help wind turbines contribute to grid reliability
- Wind turbines can be controlled but not to the extent that conventional generation can be controlled
 - Ramp rate limits
 - Up-regulation (operate below potential so that wind output can be increased if needed)
 - Curtailment, if necessary and economic, at low-load/high-wind conditions

10) Can wind energy make effective use of transmission lines?

- Conditional-firm transmission tariff (recent FERC ruling)
- Wind does not need transmission all of the time
- Most transmission paths have some open capacity most of the time
- Adding wind can result in more efficient usage of existing transmission

11) Bonus: How can more wind be accommodated on the grid?

- Utility balancing areas can combine or cooperate – large electricity markets
- Example: Ramping, or changing output of generators that can be eliminated with larger balancing areas

11) Bonus: How can more wind be accommodated on the grid?

- Power system operations practices and wind farm control/curtailment
- Integration of wind forecasting and real time measurements into control room operations – ongoing work at ERCOT, AESO
- Hydro dispatch, pumped hydro
- Longer term: other storage and markets (plug-hybrid electric vehicles, hydrogen)

Large-Scale Studies in Process

- Western Wind & Solar Integration Study
 - 30% Wind in footprint, 20% in WECC
- Eastern Wind Integration Study

Increasing Attention in North America

Utility Wind Integration and Operating IEEE **power&energy** nearly 74 (end of 2006 system pla ators in p Wind Integration from appr rapid grov federal Pr Market Opportunity Wind on a Large Scale characteri cant wind wind plan 2007 Achievements PES in Review possible s marized l power's and costs has been at Contract No United State publication,

- IEEE Transactions on Power Systems (2007)
- IEEE Power Engineering Society Magazine, November/December 2005
- Updated in 2007 and planned update in 2009
- Wind Power Coordinating Committee Wind Super-Session, Summer 2008
- Utility Wind Integration Group (UWIG): Operating Impacts and Integration Studies User Group
- www.uwig.org

Accelerating the Integration of Wind Generation into Utility Power Systems

Discussion (if time/interest)

Impact of 25% Wind Energy Penetration: 5-minute data

 Ramp requirements increase with 25% wind energy penetration. The upper panel also shows the importance of being able to achieve lower minimum loads by the conventional generation fleet.

Lower Turn-down is required

Can the non-wind fleet ramp quickly enough?

Better use of existing flexibility

- Tap into maneuverable generation that may be "behind the wall"¹
- Provide a mechanism (market, contract, other) that benefits system operator and generator
- Fast energy markets help provide needed flexibility² and can often supply load following flexibility at no cost³

http://www.nrel.gov/docs/fy08osti/43251.pdf

¹Kirby & Milligan, 2005 Methodology for Examining Control Area Ramping Capabilities with Implications for Wind http://www.nrel.gov/docs/fy05osti/38153.pdf

²Kirby & Milligan, 2008 Facilitating Wind Development: The Importance of Electric Industry Structure.

³Milligan & Kirby 2007, Impact of Balancing Areas Size, Obligation Sharing, and Ramping Capability on Wind Integration . http://www.nrel.gov/docs/fy07osti/41809.pdf

Acquire additional flexibility across BAs

- Reduce the need for ramping by combined BAs (real or virtual)
 - Ramping capability adds linearly
 - Ramping need adds less than linearly

Milligan & Kirby 2007, Impact of Balancing Areas Size, Obligation Sharing, and Ramping Capability on Wind Integration . http://www.nrel.gov/docs/fy07osti/41809.pdf

BA Consolidation Reduces Ramp Requirements

Milligan & Kirby 2008, An Analysis of Sub-Hourly Ramping Impacts of Wind Energy and Balancing Area Size.