Community Owned

Rosebud Sioux Tribe, SD: Community Wind Project

From the US Department of Energy Cast Study on wind development on the Rosebud Reservation:

"Since the late 1990s, the tribe has been actively pursuing wind development on the Rosebud Reservation. In March 2003, the Rosebud Sioux Tribe commissioned a single 750 kW NEGMicon Vestas wind turbine, which has come to be known as the Little Soldier (Akicita Cikala) turbine, in respect to the vision of Alex "Little Soldier" Lunderman and his contribution to this effort. This turbine was the result of a U.S. Department of Energy (DOE) grant awarded in late 1999, along with a matching U.S. Department of Agriculture Rural Utilities Service Loan. With the assistance of a developer and the Intertribal Council on Utility Policy (ICOUP), the RST applied for and received a DOE grant to develop a 30 MW wind farm. This resulted in the development of the Owl Feather War Bonnet Wind Farm. After five years, this wind farm's development is almost complete, with the exception of a signed power purchase agreement (PPA) and the resulting interconnection agreement. This signed agreement will enable the completion of the wind farm. The RST shall act as a passive landowner, reaping a percentage of gross receipts based on Grant of Use and Lease Agreement agreed upon by action of the RST Tribal Council and the Bureau of Indian Affairs."

 

2010 Project Update

"The Rosebud Sioux Tribe (RST) and Citizens Wind will complete the required pre-construction activities necessary to secure funding for the proposed 190 MW North Antelope Highlands wind farm, including identification of power purchasers, National Environmental Policy Act (NEPA) permitting requirements, transmission and interconnection studies, and subsequent interconnection agreements required to deliver energy to a specific set of potential purchasers. This project will result in delivery of all required environmental and cultural studies, permits and contracts sufficient to secure project financing."

 

Read more about Tribal Energy Programs at the US Dept of Energy

The Kas Brothers, Woodstock, MN: Community Wind Project

Kas Brothers Plant 25-Year Cash Crop This Season: Wind Power

From one perspective, Richard and Roger Kas of Woodstock, Minnesota are typical Midwestern farmers who have grown up farming the family land with their father, William Kas. But this family has something unmistakably unique taking place on their farm. They have seventeen modern wind turbines on their land, generating enough electricity to power 4300 households, and they’re about to put up two more. What is even more unique is that the Kas brothers will own these two new commercial-scale wind turbines. This is the first project of its kind in Minnesota, and possibly in the whole Midwest. Kas Brothers Wind Farm

The wind development came about pretty quick in Southwest Minnesota when the legislature mandated that Northern States Power, now called Xcel Energy, contract 425 MW of wind generated electricity by 2002 in exchange for allowing nuclear waste to be stored outside the Prairie Island Nuclear Plant. Landowners signed leases giving the utility and wind development companies rights to put wind turbines on a portion of their land. The Kas family was part of this group of landowners. But they chose their developer carefully.

Read this article in the Spring 2001 Windustry News.

Minwind III - IX, Luverne, MN: Community Wind Project

The Minwind projects are a series of nine farmer-owned wind projects near the town of Luverne in southwestern Minnesota.  All of the Minwind projects were based around the idea that local ownership is central to maximizing local benefits, and the projects are intended to both generate new income for farmers and benefit the local community’s economy.

The first two projects, Minwind I and II, were completed in the fall of 2002, and each consist of two NEG Micon 950 kW turbines.  These were among the first farmer-owned turbines in the nation. Minwind III through IX came online in 2004, and each of these consists of a single, 1.65 MW NEG Micon turbine.

The Minwind projects grew out of discussions among a group of farmers about various options for developing agriculture-based energy projects. After noticing the similarities between community wind and cooperative ethanol production, the group decided to begin putting the pieces together for a community wind project.

When Minwind I and II were opened to investors, 66 investors from the region eagerly snapped up all the available shares in both companies in only 12 days.  Because of the demand for opportunities to participate in renewable energy projects and the success of the first two projects, planning for the second set began almost immediately following completion of the first.

Minwind’s successful model of community wind development has engaged more and more rural Minnesotans interested in this new investment opportunity. “Our goal was to help as many rural people as we possibly could,” says Minwind Energy CEO, Mark Willers.

The Minwind projects were developed with many objectives in mind, including:
•    Generating renewable energy
•    Creating local employment opportunities
•    Maintaining group ownership
•    Keeping profits local
•    Using proven technology
•    Sustaining stable management
•    Creating long-term marketing
•    Participating in the future

With local individuals at the heart of development, the Minwind projects are maximizing local benefit in many ways: through economic development, returns on investment, and business relationships. While describing local business support, Willers explains that “the [Minwind] group became friends with the Duluth Port Authority because they shipped turbines in through Duluth. This led to a good relationship with [them] and the discussion of future business relationships.”

What did it take to get these turbines spinning? The short answer is: cooperation, persistence, and creative funding.

After the success of Minwind I and II, participants in III-IX were asked to contribute $500 for research and development funds to see if the new projects would work. Investors knew that their deposit would not be returned if the projects did not fly.  This shared commitment carries through into the projects’ governance structure.  All nine Minwind management groups are organized as limited liability companies (LLC), and Minwind projects III through IX are largely based on the same cooperative principles as Minwind I and II:
•    All shareholders must be Minnesota residents, 85% of whom must be from rural communities.
•    Ownership is limited to a maximum of 15% per project for each investor.

These two criteria ensure that both the investment opportunities and the returns remain in local hands. By capping the amount of shares allowable per owner, Minwind is able to open this opportunity to a large number of small investors. “We didn’t do all kinds of work to get a PPA [power purchase agreement] and then have an MBA team come down here and buy the whole thing,” Mark Willers explains. “That’s not what we’re about.”

In addition, projects III-IX included a few new investor conditions to further ensure local control on the wind projects:
•    Each Minwind Company has a completely different group of people.
•    The business structures were carefully designed to ensure that the shares can be transferable among family members.

These new rules go even further to ensuring that the maximum number of rural investors has an opportunity to participate in the projects, and that the charter members will be able to pass shares to their children, and not have to sell them off to outsiders.

Willers emphasizes the importance of carefully considering the business plan for a wind project, saying, “If you are looking at owning some wind turbines, you need to understand where you’re going. Does the revenue come back to one person, a group, a school, a hospital?”

In additional to the contributions from local investors, Minwind III-IX took advantage of renewable energy grants from the United States Department of Agriculture (USDA).  Like all aspects of developing community wind projects, the USDA application process was one that required a lot of time and meticulous attention. “Its good business, but those things take extra time,” said Willers.  “You go over it a third time to make sure that these are the criteria USDA needs so there are no mistakes.” Each project was awarded $178,201 in USDA Farm Bill Section 9006 grant funds for expenses including engineering, transmission, equipment, and construction.  

The financing of the Minwind projects is unique in that the projects are not dependent on the Production Tax Credit (PTC) for financial viability.  The PTC provides a tax credit to wind power producers based on the amount of electricity produced over their first ten years of operation. Minwind investors are individually eligible for the PTC, in an amount proportionate to their investment. It was left to the individual investors whether or not they will participate in the PTC. Willers says that the Board’s decision not to rely on the tax credit for financing brought some additional stability and certainty to the project’s development.

Securing a Power Purchase Agreement (PPA), which defines the rate paid for the wind energy over a set number of years, is a critical factor in the success of any wind project. For the Minwind projects, negotiating both the PPA and the interconnection agreement (which allows the turbines to hook into the larger electrical grid) required working closely with Xcel Energy, which was a relationship that “needed to be built,” noted Willers. “We need to understand where we’re all going – not just show up one day saying, ‘Oh, by the way, we’re going to hook up to your transmission line.’” Willers noted that developing a close, working relationship with the utility early in the process was very important to the success of the projects.

One other key to the success of the Minwind projects was that in both phases, they were able to find and purchase turbines with relative ease.  With the recent rapid expansion of the larger wind energy market, many wind turbine manufacturers are sold out two years in advance, which can be challenging for smaller projects to plan around.

In the end, the Minwind projects involved enormous investments of time and energy from project participants, but those involved believe their efforts have been worthwhile.  “We’ve spent an incredible amount of time on this, but we needed to do it for our community and our friends who are farmers,” said Willers.

 

Minwind I & II, Luverne, MN: Community Wind Project

In 2000, a group of farmers in Luverne, Minnesota began to hatch a plan to build farmer-owned wind turbines in Rock County. Their goal was to find an investment that would generate new income for farmers and have economic benefits for the local community. The rapid growth of the wind industry around the country and the great success of wind farming on the nearby Buffalo Ridge made developing wind energy a natural choice. “We wanted a farmer-owned project that would bring economic development, get farmers a return on their investment, and could use local businesses and contractors to do the work,” said Mark Willers, a project leader and farmer from Beaver Creek, Minnesota.

“We are trying to get farmer ownership of wind projects to the forefront and it has been a challenge, but with dedicated people like Mark Willers and Tom Arends we’re making great strides.” –Dave Kolsrud, Corn-er Stone Farmers Cooperative.

 

Read the full in the Fall 2002 Windustry Newsletter.

Carleton College, Northfield, MN: Community Wind Project

Wind Energy in Higher Education
Case Study: Carleton College Northfield, Minnesota

CARLETON COLLEGE has a 350-foot tall mascot that is setting a new trend among universities by providing both revenue for the school and clean energy for the community. In September 2004, Carleton College dedicated the first college or university owned commercial-scale wind turbine in the nation to complement the college’s environmental statement, which aims to “be a model of environmental stewardship by incorporating ideals of sustainability into the operations of the college and the daily life of individuals.”

The 1.65 megawatt (MW) turbine is located about a mile and a half east of Carleton’s Northfield, Minnesota campus and has become “a popular destination for runners and bikers,” according to Carleton student Dave Holman. “Students love it, the community loves it, and alumni double love it…because it makes sound economic, PR, and ecological sense.”

A bit of friendly rivalry is common among schools, and other nearby universities are getting in on the action as well. Already, the University of Minnesota at Morris has installed a 1.65 MW wind turbine, and St. Olaf College in Northfield, MN is anticipating commissioning a 1.65 MW turbine in July 2006. Holman encourages the rivalry “because when we compete to do good things for society, everybody wins…and tell Olaf that Carleton’s currently winning,” he jokes.

Carleton College is a “local pioneer,” according to Bruce Anderson of RENew Northfield, demonstrating the economic and performance viability of wind development in the community. As the Project Manager f Facilities Planning and Management, Rob Lmppa says that this has been a “great learning experience.” And he is not alone. Already, Lamppa has given 50-60 tours of the turbine to school groups, individuals, and other bus loads of interested groups.

Integrating Wind in the Classroom
Many school wind projects are partially motivated by the educational opportunities in math, science, business, policy, and environmental studies, which are preparing their students with skills in a fast-growing industry. At Carleton, a variety of departments have been involved in various stages of the turbine project, such as, blade design, wind mapping for site assessment, and data conversion. For example, each month, the Carleton College Physics Department posts the wind production data in their building to keep tabs on the turbine electrical generation and revenue stream, over $384,000 to date.

Laying the Groundwork for University Wind Energy

Carleton’s installation of a 1.65 Vestas turbine was the culmination of approximately two years of planning and project development as well as an integral part of larger plans for greater Carleton campus sustainability and active renewable energy planning in the Northfield community.

During the summer of 2002, local citizens group RENew Northfield helped to convene a Northfield community wind energy task force that included the City of Northfield, the Northfield School District, Carleton College, and St. Olaf College. The task force identified a windy site on a farm about 1.5 miles east of Carleton’s campus. The college’s Board of Trustees officially approved the project in February 2004 and the project proceeded on schedule, commissioning and dedicating its turbine in September 2004.

Now that the local community has lived with the turbine for nearly a year and a half, Anderson says that there is generally “broad and strong support for the Carleton wind turbine.” A number of people have called his office at RENew Northfield just to say that they are thankful that the Carleton turbine is in their community. Anderson adds, “many view this project as a symbol of progress and pride in the community.”

Wind Economics and Policy
Electricity from the wind turbine is being sold to Xcel Energy for local use in the Northfield area. Xcel is paying 3.3 cents per kWh through a fixed 20 year contract, under the terms of Xcel’s standard small wind tariff (available for wind projects under 2 MW in Minnesota).

In addition to selling electricity to Xcel, Carleton is receiving 1.5 cents per kWh generated from the State of Minnesota via the Minnesota Renewable Energy Payment Incentive (MN REPI) program. The $1.8 million project at Carleton also was aided by a $150,000 “Community Wind Rebate” from the state of Minnesota. The rest of the capital expenditure was provided from Carleton directly.

The college expects to recoup its investment with interest within 10 to 12 years. After two semesters of independent study on the economics of the turbine, Holman suggests that “Carleton should invest in a wind farm as part of its endowment because it is an incredibly good investment. Wind for Carleton has the risk level of a bond, but returns like a stock with 8-12% per year. In addition to a yearly revenue stream of about $250,000, the PR value of the turbine has been immeasurable.”

Campus Sustainability
By generating wind power, the college offsets about 40% of its electricity use, significantly reducing harmful emissions of carbon dioxide, carbon monoxide, sulfur dioxide, and mercury. Over the life of the turbine, the college will avoid producing 1.5 million tons of carbon dioxide, which is important to students at Carleton who view the turbine as “a very strong piece of their school’s identity,” according to one student.

Paving the Way - St. Olaf and Others Follow Suit
Carleton might find itself to be a trendsetter if other colleges and universities in the Midwest continue to follow through on their own plans to install wind turbines. St. Olaf College, the University of Minnesota at Morris, as well as some k-12 schools are catching on to the benefits of installing a wind turbine. St. Olaf College, located just across town in Northfield, received a $1.5 million grant from Xcel Energy’s Renewable Development fund to install a turbine of their own to match Carleton’s machine. Commissioning is scheduled for July 2006. St. Olaf intends to use the energy directly for its campus rather than sell it to the grid, and expects to supply approximately 30% of the campus electricity demand with wind each year.

St. Olaf also has plans to incorporate the turbine into curriculum with “a really cool set of courses called Campus Ecology I and II in our environmental studies program,” according to Pete Sandberg, Assistant Vice President for Facilities at St. Olaf. The turbine will also likely be integrated into an interim course looking at sustainable and renewable materials, in addition to, energy. “I think the educational uses will multiply pretty quickly beyond anything we can imagine right now,” says Sandberg.

When asked if the college is pleased with the turbine experience thus far, Sandberg echoed the comments of many who have worked in wind project development: “It has been very challenging!”

The community around St. Olaf has been generally supportive of the project. According to Pete Sandberg, Assistant Vice president for Facilities at St. Olaf, “we've had only positive feed back – no opposition, in fact, at the public hearing for the county conditional use permit, a Northfield realtor spoke, and said he believed that the value of properties with a view of the other turbine in Northfield were enhanced!”

Why is a wind turbine such a good fit for schools and universities? “We generated most of our electricity for most of our history,” says Sandberg about the college as its own utility. “We see it as just another way we contribute to keeping the place going as efficiently as possible.”

In the first quarter of 2006, St. Olaf College signed a turbine purchase contract with Vestas, and has installed the footings, transformer, and wiring in the new electrical equipment control room. Construction is scheduled for completion in July 2006. All of the work to date has been paid from college capital funds allocated to the project, which includes the first installment payment of $400,000 to Vestas.

To the northwest, the University of Minnesota at Morris broke ground for its own Vestas 1.65 MW turbine in November 2004, and began producing electricity for the campus in March 2005. Installed at the University’s West Central Research and Outreach Center, the turbine is the first commercial-scale wind energy project at a public university. The turbine supplies the campus with 5.6 million kWh per year, which is more than half of its electricity needs. Many colleges and universities around the U.S. that don’t have wind resources enough for their energy needs are purchasing green power to support renewables on campus. View a list of universities purchasing green power on the Green Power Network.

As has been demonstrated by multiple successful k-12 school projects in Minnesota and Iowa, wind turbines can be a great fit for educational institutions because they provide a clean energy, a new source of revenue and educational opportunities for students. Also schools sometimes have the option of using a wind turbine to directly offset their energy use, which can be a significant economic advantage.

As more and more schools across the nation “go green” in a variety of ways, the Midwest is leading the way for wind.

More information:
Community Wind website - wind in schools
Carleton College - history of the wind turbine RENew Northfield
Clean Energy Resources Teams Case Study
St. Olaf's turbine

Windustry Updates

Community Wind Conference Wrap Up
Thank you to everyone who participated at the second national Community Wind Energy Conference in March 2006 in Des Moines, Iowa. Over 500 people from 32 states and 3 countries joined the discussion to advance community wind energy development.
The conference proceedings are now available online.

Windustry is growing!
Windustry brought 3 new staff members on board in the past year to continue expanding the scope and depth of our work. Brian Antonich was an intern with Windustry for two summers before joining full-time as Small Wind Program Analyst. Brian received his Masters Degree in 2005 from the University of Washington in Electrical Engineering, focusing on wind energy systems. Cole McVey moved from North Carolina in October 2005, where she worked with the Appalachian State University Energy Center and Small Wind Initiative, to Minnesota to work as Program Associate with Windustry. Dave Tidball joined Windustry in June of 2005 to help expand the number and range of projects with administrative support. Lisa Daniels and Sarah Johnson remain fixtures on the Windustry team.
About the Windustry team

Windustry Membership
Join Windustry today. Help us continue to increase wind energy opportunities for rural landowners and communities and provide sound information and technical support. Becoming a member of Windustry builds a strong base of advocacy for public policy that supports community wind. As a non-profit organization, Windustry depends on the support of foundations, government contracts, and people who use our information and services. If you appreciate our work and would like to support our development, become a member of Windustry today!

Windustry’s Networks Expand
With our growing team of staff and support, Windustry has been able to expand our programs as well:

Home and Farm Windustry
WINDUSTRY HAS ADDED a home and farm-scale wind energy program to our menu of resource offerings. Also known as small wind, this program will focus on technical and policy issues for turbines under 100kW in size. Contact Brian Antonich at 612/870-3465, or visit: www.windustry.org/smallwind

Community Wind Listserv
When we talk about community wind, we are generally describing commercial-scale wind turbines and projects that feature local ownership and participation and are generally larger than 100 kW. To join this active wind discussion group to keep posted on today's most current news and issues surrounding community wind development!

Women of Wind Energy (WOWE) a group of individuals who support and encourage the participation of professional women in the wind energy industry by providing networking opportunities and student sponsorships. WOWE, formed in 2005 and housed at Windustry, has an online listserv and website.

We also maintain our Wind Farmers Network, an online forum for farmers, landowners, and others to ask questions, discuss current issues, and share experiences with wind energy development. Windustry launched the Wind Farmers Network in 2004, and now has over 1,100 members joined in the dialogue. If you would like to join the Wind Farmers Network, visit www.windfarmersnetwork.org, or call Windustry at (612)870-3461 with questions.

Visit Windustry at the Minnesota State Fair
AUGUST 24 – SEPTEMBER 4, 2006.
Windustry will host hands-on and interactive exhibits in the new EcoExperience Building on the State Fair Grounds.
MN State Fair

Wind Energy News

WINDPOWER 2006
Windustry staff joined 5,000 other members of the wind industry in the annual American Wind Energy Association conference. At this year's event, June 5-7 in Pittsburgh, PA, Windustry participated hosted the Community Wind Update Meeting, Women of Wind Energy Networking Luncheon, and participated in the Small Wind Stakeholders Meeting and the Wind Powering America All States Summit. It was a marathon week for Windustry in PA, but we look forward to seeing you all again next year!
AWEA 2006 Conference website

Clean Renewable Energy Bonds
Clean Renewable Energy Bonds (CREBs) are a new financing tool released by the United States Treasury, to provide an incentive for publicly-owned renewable energy projects that do not qualify for federal Production Tax Credits (PTCs). The $800 million available between January 1, 2006 and December 31, 2007 is for any governmental entity (including tribal governments) or electric cooperative company that applied by the April 26th, 2006 deadline. Stay tuned to hear how CREBs turn out for public wind energy projects. More information on CREBs at the Environmental Law and Policy Center Site.

Pipestone-Jasper School District, Pipestone, MN: Community Wind Project

Excerpt from Case Study done by

In Fall 2001, the Pipestone- Jasper School District was awarded one of Xcel Energy’s Renewable Development Fund grants to construct a wind turbine. Jack Keers, a Pipestone County Commissioner, and Dan Juhl, a local wind developer, had urged the Pipestone-Jasper School District to apply for a grant to install a wind turbine at the new school to supply part of the school’s electricity needs. The District was ideally positioned and seemed like a perfect fit for a school wind turbine project. The school would be located on a very windy Buffalo Ridge location, funding for the new school was secure, and construction was significantly under budget. With the Renewable Development Fund grant in place, the District must contribute $150,000 toward turbine construction and Xcel Energy contributes the remaining $850,000.

 

Case Study is available on the CERTS website

http://www.cleanenergyresourceteams.org/files/CS-PipestoneJasper_wind.pdf

Pages

Subscribe to Community Owned